题目内容


如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为(  )

 

A.

B.

C.

D.

 


D解:连结OE1,OD1,OD2,如图,

∵六边形A1B1C1D1E1F1为正六边形,

∴∠E1OD1=60°,

∴△E1OD1为等边三角形,

∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,

∴OD2⊥E1D1

∴OD2=E1D1=×2,

∴正六边形A2B2C2D2E2F2的边长=×2,

同理可得正六边形A3B3C3D3E3F3的边长=(2×2,

则正六边形A10B10C10D10E10F10的边长=(9×2=

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网