题目内容

11.如果规定“*”所表示的运算为:a*b=$\frac{x}{a+b}$+$\frac{y}{(a+1)(b+1)}$.已知1*2=3,2*3=4,计算(-3)*(-2).

分析 根据已知等式,利用新定义列出方程组,求出方程组的解得到x与y的值,原式利用新定义计算即可得到结果.

解答 解:根据题意得:$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{6}=3}\\{\frac{x}{5}+\frac{y}{12}=4}\end{array}\right.$,
方程组整理得:$\left\{\begin{array}{l}{2x+y=18①}\\{12x+5y=240②}\end{array}\right.$,
②-①×5得:2x=150,即x=75,
把x=75代入①得:y=-132,
则(-3)*(-2)=$\frac{75}{-5}$+$\frac{-132}{2}$=-15-66=-81.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网