题目内容

13.某渔船计划从码头出发到指定海域捕鱼,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该渔船加快速度仍匀速前进,结果恰好准点到达,如图是该渔船行驶的路程y(海里)与所用时间t(小时)的函数图象,则该渔船从码头到捕鱼海域的路程是480海里.

分析 根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程.

解答 解:由图象及题意,得
故障前的速度为:80÷1=80海里/时,
故障后的速度为:(180-80)÷1=100海里/时.
设航行额全程有a海里,由题意,得
$\frac{a}{80}=2+\frac{a-80}{100}$,
解得:a=480.
故答案为:480.

点评 本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网