ÌâÄ¿ÄÚÈÝ
3£®±ø±ø¡¢·¼·¼¡¢æÃæÃºÍÑî»ÔÔÚ×ö¿ÎÍâ×÷ҵʱ£¬¶ÔÓÚ¡°¼ÆËãÏÂÁзÖʽ£º¢Ù$\frac{a}{b}•\frac{b}{2a}$£»¢Ú$\frac{y}{x}¡Â\frac{b}{a}$£»¢Û$\frac{2}{a}¡Â\frac{4}{{a}^{2}}$£»¢Ü$\frac{{x}^{3}}{2y}¡Â\frac{3{x}^{2}}{y}$£¬Æä½á¹ûÊÇ·ÖʽµÄÓÐÄÄЩ¡±µÃµ½ÏÂÃæËÄÖÖ²»Í¬µÄ½á¹û£®±ø±ø£ºÖ»ÓТ٣»·¼·¼£ºÖ»ÓТڣ»æÃæÃ£º¢Ù¢Ú¢Û£¬
ÄãÈÏΪ½á¹ûÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ±ø±ø | B£® | ·¼·¼ | C£® | æÃæÃ | D£® | Ñî»Ô |
·ÖÎö ¸ù¾Ý·ÖʽµÄ³Ë³ý·¨·¨Ôò½øÐмÆËã¼´¿É£®
½â´ð ½â£º£º¢Ù$\frac{a}{b}•\frac{b}{2a}$=$\frac{1}{2}$ΪÕûʽ£»
¢Ú$\frac{y}{x}¡Â\frac{b}{a}$=$\frac{y}{x}•\frac{a}{b}=\frac{ya}{xb}$ÊÇ·Öʽ£»
¢Û$\frac{2}{a}¡Â\frac{4}{{a}^{2}}$=$\frac{2}{a}•\frac{{a}^{2}}{4}=\frac{a}{2}$ÊÇÕûʽ£»
¢Ü$\frac{{x}^{3}}{2y}¡Â\frac{3{x}^{2}}{y}$=$\frac{{x}^{3}}{3y}•\frac{y}{3{x}^{2}}$=$\frac{1}{9}$ΪÕûʽ£®
¹ÊÊÇ·ÖʽµÄÖ»ÓТڣ®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇ·ÖʽµÄ³Ë³ý¡¢·ÖʽµÄ¶¨Ò壬կÎÕ·ÖʽµÄ³Ë·¨¡¢³ý·¨·¨ÔòÒÔ¼°·ÖʽµÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿