ÌâÄ¿ÄÚÈÝ
10£®ÔĶÁÏÂÁÐÒ»¶ÎÎÄ×Ö£¬²¢¸ù¾Ý¹æÂɽâÌ⣺¡ß$\frac{1}{1¡Á3}$=$\frac{1}{2}$£¨1-$\frac{1}{3}$£©
$\frac{1}{3¡Á5}$=$\frac{1}{2}$£¨$\frac{1}{3}$-$\frac{1}{5}$£©
$\frac{1}{5¡Á7}$=$\frac{1}{2}$£¨$\frac{1}{5}$-$\frac{1}{7}$£©
¡
¡à$\frac{1}{1¡Á3}$+$\frac{1}{3¡Á5}$+¡+$\frac{1}{99¡Á101}$=$\frac{50}{101}$£®
ÊÔ¼ÆËã
$\frac{1}{x£¨x+2£©}$+$\frac{1}{£¨x+2£©£¨x+4£©}$+$\frac{1}{£¨x+4£©£¨x+6£©}$+$\frac{1}{£¨x+6£©£¨x+8£©}$£®
·ÖÎö ÓÉÌâÒâ¿ÉÖª$\frac{1}{1¡Á3}$+$\frac{1}{3¡Á5}$+¡+$\frac{1}{99¡Á101}$=$\frac{1}{2}$£¨1-$\frac{1}{3}$$+\frac{1}{3}$$-\frac{1}{5}$+¡+$\frac{1}{99}-\frac{1}{101}$£©£¬´Ó¶ø¿ÉÇóµÃ´ð°¸£»°´ÕÕÉÏÊö·½·¨½«¸÷·Öʽ½øÐвðÏîÁÑÏ´Ó¶ø¿ÉÇóµÃ´ð°¸£®
½â´ð ½â£º$\frac{1}{1¡Á3}$+$\frac{1}{3¡Á5}$+¡+$\frac{1}{99¡Á101}$=$\frac{1}{2}$£¨1-$\frac{1}{3}$$+\frac{1}{3}$$-\frac{1}{5}$+¡+$\frac{1}{99}-\frac{1}{101}$£©
=$\frac{1}{2}¡Á£¨1-\frac{1}{101}£©$
=$\frac{1}{2}¡Á\frac{100}{101}$
=$\frac{50}{101}$£®
¹Ê´ð°¸Îª£º$\frac{50}{101}$£®
$\frac{1}{x£¨x+2£©}$+$\frac{1}{£¨x+2£©£¨x+4£©}$+$\frac{1}{£¨x+4£©£¨x+6£©}$+$\frac{1}{£¨x+6£©£¨x+8£©}$=$\frac{1}{2}$£¨$\frac{1}{x}-\frac{1}{x+2}$£©+$\frac{1}{2}£¨\frac{1}{x+2}-\frac{1}{x+4}£©$+¡+$\frac{1}{2}£¨\frac{1}{x+6}-\frac{1}{x+8}£©$
=$\frac{1}{2}¡Á$£¨$\frac{1}{x}-\frac{1}{x+8}$£©
=$\frac{1}{2}¡Á$$\frac{8}{x£¨x+8£©}$
=$\frac{4}{x£¨x+8£©}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇ·ÖʽµÄ¼Ó¼õ£¬ÒÀ¾Ý²ðÏîÁÑÏî·¨Çó½âÊǽâÌâµÄ¹Ø¼ü£®
| A£® | ¡Ï1=¡Ï3 | B£® | ¡Ï1=¡Ï2 | C£® | ¡Ï2=¡Ï3 | D£® | ¡Ï1=¡Ï2=¡Ï3 |
| A£® | 3a-2a=1 | B£® | a+2a2=3a3 | C£® | -£¨a-b£©=-a+b | D£® | 2£¨a+b£©=2a+b |
| A£® | 812¡Á106 | B£® | 81.2¡Á107 | C£® | 8.12¡Á108 | D£® | 8.12¡Á109 |
| A£® | V=30P | B£® | P=V+900 | C£® | P=30V | D£® | PV=30 |
| A£® | $\sqrt{16}$=¡À4 | B£® | $\sqrt{{{£¨-5£©}^2}}$=-5 | C£® | ¡À$\sqrt{64}$=¡À8 | D£® | $\root{3}{-27}$=-9 |