题目内容


已知关于x的方程x2+(m+2)x+2m﹣1=0.

(1)求证:方程有两个不相等的实数根.

(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.


【考点】根的判别式;根与系数的关系.

【专题】计算题.

【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;

(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.

【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)

=m2﹣4m+8

=(m﹣2)2+4,

∵(m﹣2)2≥0,

∴(m﹣2)2+4>0,

即△>0,

所以方程有两个不相等的实数根;

(2)设方程的两个根为x1,x2,由题意得:

x1+x2=0,即m+2=0,解得m=﹣2,

当m=﹣2时,方程两根互为相反数,

当m=﹣2时,原方程为x2﹣5=0,

解得:x1=﹣,x2=

【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网