题目内容

已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出以下四个结论:①∠EBC=22.5°;②AE=2EC;③劣弧AE是劣弧DE的2倍;④DE=DC.其中不正确结论的序号是(  )
A、①B、④C、③D、②
考点:圆周角定理
专题:
分析:①AB是直径,易知∠AEB=90°,而∠ABE=45°,AB=AC,从而易求∠ABC和∠ACB,进而可求∠EBC;
②在Rt△BCE中,易求∠EBC和∠C,利用BE=tan67.5°•CE,可知BE≠2CE,利用∠BAC=45°,∠AEB=90°,易证△ABE是等腰直角三角形,从而可知AE≠2CE;
③由于∠ABE=45°,BAD=22.5°,易得劣弧AE=2劣弧BD,而劣弧BD=劣弧DE,从而易证劣弧AE=2劣弧DE;
④由圆内接四边形的外角等于它的内对角,得到一对角相等,再由AB=AC,利用等边对等角得到一对角相等,等量代换得到∠DEC=∠ACB,利用等角对等边即可得到DE=DC.
解答:解:①∵∠A=45°,AB是直径,
∴∠AEB=90°,
∴∠ABE=45°,
∵AB=AC,
∴∠ABC=∠ACB=67.5°,
∴∠EBC=67.5°-45°=22.5°,
此选项正确,不符合题意;
②∵AB是直径,
∴∠AEB=90°,
由①知∠EBC=22.5°,∠C=67.5°,
∴BE=tan67.5°•CE,
∴BE≠2CE,
在Rt△ABE中,∠AEB=90°,∠BAE=45°,
∴∠ABE=45°,
∴AE=BE,
∴AE≠2CE,
此选项错误,符合题意;
③∵∠ABE=45°,∠BAD=22.5°,
∴劣弧AE=2劣弧BD,
∵劣弧BD=劣弧DE,
∴劣弧AE=2劣弧DE,
此选项正确,不符合题意;
④∵∠DEC为圆内接四边形ABDE的外角,
∴∠DEC=∠ABC,
又AB=AC,
∴∠ABC=∠ACB,
∴∠DEC=∠ACB,
∴DE=DC,
本选项正确,不符合题意;
故选D.
点评:本题考查了圆周角定理、等腰直角三角形的判定和性质、等腰三角形三线合一定理,解题的关键是求出相应角的度数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网