题目内容
| A、① | B、④ | C、③ | D、② |
考点:圆周角定理
专题:
分析:①AB是直径,易知∠AEB=90°,而∠ABE=45°,AB=AC,从而易求∠ABC和∠ACB,进而可求∠EBC;
②在Rt△BCE中,易求∠EBC和∠C,利用BE=tan67.5°•CE,可知BE≠2CE,利用∠BAC=45°,∠AEB=90°,易证△ABE是等腰直角三角形,从而可知AE≠2CE;
③由于∠ABE=45°,BAD=22.5°,易得劣弧AE=2劣弧BD,而劣弧BD=劣弧DE,从而易证劣弧AE=2劣弧DE;
④由圆内接四边形的外角等于它的内对角,得到一对角相等,再由AB=AC,利用等边对等角得到一对角相等,等量代换得到∠DEC=∠ACB,利用等角对等边即可得到DE=DC.
②在Rt△BCE中,易求∠EBC和∠C,利用BE=tan67.5°•CE,可知BE≠2CE,利用∠BAC=45°,∠AEB=90°,易证△ABE是等腰直角三角形,从而可知AE≠2CE;
③由于∠ABE=45°,BAD=22.5°,易得劣弧AE=2劣弧BD,而劣弧BD=劣弧DE,从而易证劣弧AE=2劣弧DE;
④由圆内接四边形的外角等于它的内对角,得到一对角相等,再由AB=AC,利用等边对等角得到一对角相等,等量代换得到∠DEC=∠ACB,利用等角对等边即可得到DE=DC.
解答:解:①∵∠A=45°,AB是直径,
∴∠AEB=90°,
∴∠ABE=45°,
∵AB=AC,
∴∠ABC=∠ACB=67.5°,
∴∠EBC=67.5°-45°=22.5°,
此选项正确,不符合题意;
②∵AB是直径,
∴∠AEB=90°,
由①知∠EBC=22.5°,∠C=67.5°,
∴BE=tan67.5°•CE,
∴BE≠2CE,
在Rt△ABE中,∠AEB=90°,∠BAE=45°,
∴∠ABE=45°,
∴AE=BE,
∴AE≠2CE,
此选项错误,符合题意;
③∵∠ABE=45°,∠BAD=22.5°,
∴劣弧AE=2劣弧BD,
∵劣弧BD=劣弧DE,
∴劣弧AE=2劣弧DE,
此选项正确,不符合题意;
④∵∠DEC为圆内接四边形ABDE的外角,
∴∠DEC=∠ABC,
又AB=AC,
∴∠ABC=∠ACB,
∴∠DEC=∠ACB,
∴DE=DC,
本选项正确,不符合题意;
故选D.
∴∠AEB=90°,
∴∠ABE=45°,
∵AB=AC,
∴∠ABC=∠ACB=67.5°,
∴∠EBC=67.5°-45°=22.5°,
此选项正确,不符合题意;
②∵AB是直径,
∴∠AEB=90°,
由①知∠EBC=22.5°,∠C=67.5°,
∴BE=tan67.5°•CE,
∴BE≠2CE,
在Rt△ABE中,∠AEB=90°,∠BAE=45°,
∴∠ABE=45°,
∴AE=BE,
∴AE≠2CE,
此选项错误,符合题意;
③∵∠ABE=45°,∠BAD=22.5°,
∴劣弧AE=2劣弧BD,
∵劣弧BD=劣弧DE,
∴劣弧AE=2劣弧DE,
此选项正确,不符合题意;
④∵∠DEC为圆内接四边形ABDE的外角,
∴∠DEC=∠ABC,
又AB=AC,
∴∠ABC=∠ACB,
∴∠DEC=∠ACB,
∴DE=DC,
本选项正确,不符合题意;
故选D.
点评:本题考查了圆周角定理、等腰直角三角形的判定和性质、等腰三角形三线合一定理,解题的关键是求出相应角的度数.
练习册系列答案
相关题目
下列六种说法正确的个数是( )
①无限小数都是无理数; ②正数、负数统称有理数; ③无理数的相反数还是无理数;
④无理数与无理数的和一定还是无理数; ⑤无理数与有理数的和一定是无理数;
⑥有理数和无理数统称实数.
①无限小数都是无理数; ②正数、负数统称有理数; ③无理数的相反数还是无理数;
④无理数与无理数的和一定还是无理数; ⑤无理数与有理数的和一定是无理数;
⑥有理数和无理数统称实数.
| A、2个 | B、3个 | C、4个 | D、5个 |
在平面直角坐标系xOy中,已知点P(-3,3),点Q在x轴上,△PQO是等腰三角形,则满足条件的点Q共有( )
| A、5个 | B、4个 | C、3个 | D、2个 |
已知反比例函数图象经过点(2,-2),(-1,n),则n等于( )
| A、3 | B、4 | C、-3 | D、-4 |