题目内容

19.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=$\frac{1}{2}$AE;③AC+CE=AB;④AB-BC=2FC;其中正确的结论有(  )
A.1个B.2个C.3个D.4个

分析 过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DF=DH,根据勾股定理求出AC=AQ,AF=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出③;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②①;证△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.

解答 解:如图,

过E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴③正确;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=$\frac{1}{2}$∠CAB=22.5°=∠BAD,
∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD,
∴∠DBC=∠CAD,
在△ACN和△BCD中,
$\left\{\begin{array}{l}{∠DBC=∠CAD}\\{AC=BC}\\{∠ACN=∠DCB}\end{array}\right.$,
∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=$\frac{1}{2}$AE,
∵AN=BD,
∴BD=$\frac{1}{2}$AE,
∴①正确,②正确;
过D作DH⊥AB于H,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA,
∵AE平分∠CAB,DF⊥AC,DH⊥AB,
∴DF=DH,
在△DCF和△DBH中
$\left\{\begin{array}{l}{∠F=∠DHB=90°}\\{∠FCD=∠DBA}\\{DF=DH}\end{array}\right.$,
∴△DCF≌△DBH,
∴BH=CF,
由勾股定理得:AF=AH,
∴$\frac{AC+AB}{AF}$=$\frac{AC+AH+BH}{AF}$=$\frac{AC+AM+CM}{AM}$$\frac{AC+AF+CF}{AF}$=$\frac{2AF}{AF}$=2,
∴AC+AB=2AF,
AC+AB=2AC+2CF,
AB-AC=2CF,
∵AC=CB,
∴AB-CB=2CF,
∴④正确.
故选D

点评 本题主要考查了三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网