题目内容
7.(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是-π;
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或-4π;
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3.
①第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远.
②当圆片结束运动时,A点运动的路程共有26π,此时点A所表示的数是-6π.
分析 (1)利用圆的半径以及滚动周数即可得出滚动距离;
(2)利用圆的半径以及滚动周数即可得出滚动距离;
(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;
②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.
解答 解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是-π;
故答案为:无理,-π;
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或-4π;
故答案为:4π或-4π;
(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3,
∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,
故答案为:4,3;
②∵|+2|+|-1|+|+3|+|-4|+|-3|=13,
∴13×2π×1=26π,
∴A点运动的路程共有26π;
∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,
(-3)×2π=-6π,
∴此时点A所表示的数是:-6π,
故答案为:26π,-6π.
点评 此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.
练习册系列答案
相关题目
17.下列一组数:8,-2.6,-3$\frac{1}{2}$,2$\frac{2}{3}$,-5.7中负分数有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
17.
如图,∠A+∠B+∠C+∠D+∠E的度数为( )
| A. | 180o | B. | 270o | C. | 360o | D. | 540o |