题目内容

如图,己知△ABC是等边三角形,点P在△ABC内,点Q在△ABC外,分别连接AP、BP、AQ、CQ,∠ABP=∠ACQ, BP=CQ.

(1)求证:△ABP≌△ACQ;

(2)连接PQ,求证△APQ是等边三角形;

(3)连接P设△CPQ是以PQC为顶角的等腰三角形,且∠BPC=100,求∠APB的度数.

(1)答案见解析;(2)答案见解析;(3)160° 【解析】试题分析:易证AB=AC,∠BAC=60°,即可证明△ABP≌△ACQ,可得∠BAP=∠CAQ,AP=AQ,即可求得∠PAQ=60°,即可解题. (1)证明: ∵ △ABC是等边三角形, ∴ AB=AC . 在△ABP和△ACQ中 , ∴ △ABP ≌ △ACQ ( SAS ). (2)证明: ∵...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网