题目内容
13.(1)计算:($\frac{1}{2}$)-1-$\sqrt{27}$-(π-2016)0+9tan30°;(2)解分式方程:$\frac{x-3}{x-2}$+1=$\frac{3}{x-2}$.
分析 (1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答 解:(1)原式=2-3$\sqrt{3}$-1+9×$\frac{\sqrt{3}}{3}$=2-3$\sqrt{3}$-1+3$\sqrt{3}$=1;
(2)去分母得:x-3+x-2=3,
解得:x=4,
经检验x=4是分式方程的解.
点评 此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
1.
近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:
最喜爱的一种活动统计表
(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?
(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.
最喜爱的一种活动统计表
| 活动形式 | 征文 | 讲故事 | 演讲 | 网上竞答 | 其他 |
| 人数 | 60 | 30 | 39 | a | b |
(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.
18.
把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的( )
| A. | 内部 | B. | 外部 | C. | 边上 | D. | 以上都有可能 |
5.
在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表
请根据以上信息解答下列问题:
(1)填空:m=4,n=1;
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表
| 组别 | 步数分组 | 频数 |
| A | 5500≤x<6500 | 2 |
| B | 6500≤x<7500 | 10 |
| C | 7500≤x<8500 | m |
| D | 8500≤x<9500 | 3 |
| E | 9500≤x<10500 | n |
(1)填空:m=4,n=1;
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.