题目内容
考点:矩形的性质
专题:
分析:首先证明出S△APD+S△BPC=S△ABP+S△CPD=
S矩形ABCD,然后得到S△PAB=
S矩形ABCD-S△PCD=
S矩形ABCD-2,最后得到S△PAC=S△ABP+S△BPC-S△ABC=S△ABP+S△BPC-
S矩形ABCD,于是即可求出△PAC的面积.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:连接PA,AC,
∵S△APD+S△BPC=
S矩形ABCD,S△ABP+S△CPD=
S矩形ABCD,
∴S△APD+S△BPC=S△ABP+S△PCD=
S矩形ABCD,
∴S△PAB=
S矩形ABCD-S△PCD=
S矩形ABCD-2,
∴S△PAC=S△ABP+S△BPC-S△ABC
=S△ABP+S△BPC-
S矩形ABCD
=
S矩形ABCD-2+6-
S矩形ABCD
=4.
∵S△APD+S△BPC=
| 1 |
| 2 |
| 1 |
| 2 |
∴S△APD+S△BPC=S△ABP+S△PCD=
| 1 |
| 2 |
∴S△PAB=
| 1 |
| 2 |
| 1 |
| 2 |
∴S△PAC=S△ABP+S△BPC-S△ABC
=S△ABP+S△BPC-
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=4.
点评:本题主要考查矩形的性质的知识点,解答本题的关键是用S△PAC=S△ABP+S△BPC-S△ABC=S△ABP+S△BPC-
S矩形ABCD,此题有一定的难度.
| 1 |
| 2 |
练习册系列答案
相关题目
下列二次根式中,与
能合并的是( )
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|