题目内容

2.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

分析 连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.推出△ADK≌△ABE,根据全等三角形的性质得到∠ABE=∠K=45°,证得△BMG是等腰直角三角,求出BC=4,AB=4$\sqrt{2}$,MB=2$\sqrt{2}$,由ME≥MG,于是得到当ME=MG时,ME的值最小.

解答 解:连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.
在△ADK与△ABE中,
$\left\{\begin{array}{l}{AK=AB}\\{∠KAD=∠BAE}\\{AD=AE}\end{array}\right.$
∴△ADK≌△ABE,
∴∠ABE=∠K=45°,
∴△BMG是等腰直角三角形,
∵BC=4,
∴AB=4$\sqrt{2}$,BM=2$\sqrt{2}$,
∴MG=2,∠G=90°
∴BM≥MG,
∴当ME=MG时,ME的值最小,
∴ME=BE=2
故选:A

点评 本题证明线段最短有一点的难度.但通过构造全等三角形,利用全等三角形和直角三角形的性质就变得容易.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网