题目内容

有四张正面分别标有-1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,设P点的坐标为(a,b).如图,点P落在抛物线y=x2与直线y=x+2所围成的封闭区域内(图中含边界的阴影部分)的概率是
 
考点:列表法与树状图法,二次函数的性质
专题:计算题
分析:先确定抛物线y=x2与直线y=x+2的交点坐标为(-1,1)和(2,4),再利用树状图展示所有12种等可能的结果数,然后找出满足条件的P点的个数,再利用概率公式计算.
解答:解:解方程组
y=x2
y=x+2
x=-1
y=1
x=2
y=4

所以抛物线y=x2与直线y=x+2的交点坐标为(-1,1)和(2,4),
画树状图为:

共有12种等可能的结果数,其中点P落在抛物线y=x2与直线y=x+2所围成的封闭区域内(图中含边界的阴影部分)有4种,它们是(-1,1)、(0,1)、(0,2)、(1、2),
所以点P落在抛物线y=x2与直线y=x+2所围成的封闭区域内(图中含边界的阴影部分)的概率=
4
12
=
1
3

故答案为
1
3
点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果数,再找出某事件所占有的结果数,然后根据概率公式计算这个事件的概率.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网