ÌâÄ¿ÄÚÈÝ

9£®Èçͼ£¬ÁâÐÎֽƬABCDµÄ±ß³¤Îª2£¬ÕÛµþÁâÐÎֽƬ£¬½«B¡¢DÁ½µãÖØºÏÔÚ¶Ô½ÇÏßBDÉϵÄͬһµãP´¦£¬ÕÛºÛ·Ö±ðΪEF¡¢GH£®ÖغϵãPÔÚ¶Ô½ÇÏßBDÉÏÒÆ¶¯£¬ÉèÕÛºÛEFµÄ³¤Îªm£®ÇëÄã·Ö±ðÅжÏÒÔϽáÂÛµÄÕæ¼Ù£¬²¢¸ø³öÀíÓÉ£®
£¨1£©Èô¡ÏABC=60¡ã£¬Áù±ßÐÎAEFCHGµÄÖܳ¤ÊÇ4+2m£»
£¨2£©Èô¡ÏABC=90¡ã£¬Áù±ßÐεÄÃæ»ýµÄ×î´óÖµÊÇ3£»
£¨3£©Èô¡ÏABC=120¡ã£¬Áù±ßÐÎAEFCHGµÄÃæ»ý¹ØÓÚÕۺ۵ij¤mµÄº¯Êý¹ØÏµÊ½ÊÇ£ºSAEFCHG=-$\frac{\sqrt{3}}{6}$m2+m+$\sqrt{3}$£¨0$£¼m£¼2\sqrt{3}$£©£»
£¨4£©Èô¡ÏABCµÄ´óСΪ2¦Á£¨ÆäÖЦÁÊÇÈñ½Ç£©£¬Áù±ßÐÎAEFCHGµÄÖܳ¤ÊÇ4+4sin¦Á£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÖª¡÷BEFºÍ¡÷DGHÊǵȱßÈý½ÇÐΣ¬ÔÙ¸ù¾ÝÁâÐεÄÐÔÖʼ´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖªËıßÐÎBEPFºÍËıßÐÎDGPHÊÇÕý·½ÐΣ¬ÔÙ¸ù¾ÝÕý·½ÐεÄÐÔÖʼ´¿ÉÇó½â£»
£¨3£©¸ù¾ÝÌâÒâ¿ÉÖªEF+GH=AC£¬ÔÙ¸ù¾ÝÈý½Çº¯ÊýºÍÁâµÄÐÔÖʼ´¿ÉÇó½â£»
£¨4£©¸ù¾ÝÌâÒâ¿ÉÖªEF+GH=AC£¬ÔÙ¸ù¾ÝÈý½Çº¯ÊýºÍÁâÐεÄÐÔÖʼ´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©´í£»Èô¡ÏABC=60¡ã£¬ÓÉÌâÒâ¿ÉÖª¡÷BEFºÍ¡÷DGHÊǵȱßÈý½ÇÐΣ¬
¡àEF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6£®
¡àÁù±ßÐÎAEFCHGµÄÖܳ¤Îª 6£¬Áù±ßÐÎAEFCHGµÄÖܳ¤Îª6ÊǶ¨Öµ£¬ÓëÕÛºÛEFµÄ³¤mÎ޹أ»
£¨2£©¶Ô£»Èô¡ÏABC=90¡ã£¬${S_{AEFCHG}}={S_{¡÷BCD}}+{S_{AEPG}}=2+\frac{{\sqrt{2}m}}{2}£¨2-\frac{{\sqrt{2}m}}{2}£©=-\frac{1}{2}{m^2}+\sqrt{2}m+2$SAEFCHG×î´óÖµ=$\frac{{4¡Á£¨-\frac{1}{2}£©¡Á2-{{£¨\sqrt{2}£©}^2}}}{{4¡Á£¨-\frac{1}{2}£©}}=3$£»
£¨3£©¶Ô£»SAEFCHG=S¡÷BCD+SAEPG=$\frac{{\sqrt{3}}}{4}¡Á{2^2}$+$\frac{{\sqrt{3}m}}{3}£¨2-\frac{{\sqrt{3}m}}{3}£©¡Á\frac{{\sqrt{3}}}{2}$=$-\frac{{\sqrt{3}}}{6}{m^2}+m+\sqrt{3}$£¨0£¼m£¾2$\sqrt{3}$£©£»
£¨4£©¶Ô£»Èô¡ÏABCµÄ´óСΪ2¦Á£¬ÓÉÌâÒâ¿ÉÖªEF+GH=AC£¬ÔòÁù±ßÐÎAEFCHGµÄÖܳ¤¿É±íʾΪ2¡Á2+2¡Ásin¦Á¡Á2=4+4sin¦Á£®

µãÆÀ ¿¼²éÁË·­Õ۱任£¨ÕÛµþÎÊÌ⣩£¬ÁâÐεÄÐÔÖÊ£¬±¾Ìâ¹Ø¼üÊǵõ½EF+GH=AC£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶÈ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø