题目内容

18.国产先进无人机“彩虹五号”以每小时200千米的速度在某区域巡航,如图在距地面5千米高度的A处测得地面点B处的俯角为30°,此时B处恰有一疑似恐怖分子驾驶车辆一直向前逃窜,无人机随即水平跟踪飞行了6千米到达D处,在D处测得该车辆所在位置C处的俯角为45°,试求该车辆的平均行驶速度.
(假设A、B、C、D在同一平面内,$\sqrt{3}$取1.7)

分析 过D作DF⊥BE于F,由题意得∠ABE=30°,∠DCF=45°,于是得到EF=AD=6km,DF=AE=CF=5km,解Rt△AEB得到BE=$\frac{AE}{tan30°}$=$\frac{5}{\frac{\sqrt{3}}{3}}$=5$\sqrt{3}$km,求出BF=BE-EF=5$\sqrt{3}$-6,根据速度=$\frac{路程}{时间}$即可得到结论.

解答 解:过D作DF⊥BE于F,
由题意得:∠ABE=30°,∠DCF=45°,
∴EF=AD=6km,DF=AE=CF=5km,
在Rt△AEB中,BE=$\frac{AE}{tan30°}$=$\frac{5}{\frac{\sqrt{3}}{3}}$=5$\sqrt{3}$km,
∴BF=BE-EF=5$\sqrt{3}$-6,
∴BC=CF-BF=11-5$\sqrt{3}$,
∴该车辆的平均行驶速度=$\frac{11-5\sqrt{3}}{\frac{6}{200}}$≈$\frac{250}{3}km/h$.
答:该车辆的平均行驶速度是$\frac{250}{3}km/h$.

点评 本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网