题目内容
如图,点O是△ABC的内切圆的圆心.若∠BAC=75°,则∠BOC的度数为( )

| A.105° | B.125° | C.127.5° | D.100° |
∵点O是△ABC的内切圆的圆心,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∵∠BAC=75°,
∴∠ABC+∠ACB=180°-∠BAC=105°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-
(∠ABC+∠ACB)=180°-
×105°=127.5°.
故选C.
∴∠OBC=
| 1 |
| 2 |
| 1 |
| 2 |
∵∠BAC=75°,
∴∠ABC+∠ACB=180°-∠BAC=105°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-
| 1 |
| 2 |
| 1 |
| 2 |
故选C.
练习册系列答案
相关题目