题目内容
解方程.
(1)2x(x+3)=6(x+3)
(2)(2x-1)2=5
(3)y2-y=12
(4)2x2-5x+1=0
函数y=x2-2x+2的图象顶点坐标是( )
A.(-1,1) B.(1,1) C.(0,1) D.(1,0)
已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(-2, 2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC关于y轴的轴对称图形△A1B1C1;
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2 与△A1B1C1位似,且位似比为2:1;
(3)求△A1B1C1与△A2B2C2的面积比.
如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF的面积为2,则四边形EBCF的面积为( ).
A.4 B.6 C.16 D.18
已知:如图,⊿ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线.
(2)若∠CAB=120°,AB=2,求BC的长.
下列命题:①长度相等的弧是等弧②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ).
A.1个 B.2个 C.3个 D.0个
某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是 .
已知,则= .
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.
(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.