题目内容

16.等腰三角形的两边长分别为4和7,则它的周长为(  )
A.18B.15C.15或18D.19

分析 本题没有明确说明已知的边长哪个是腰长,则有两种情况:①腰长为4;②腰长为7.再根据三角形的性质:三角形的任意两边的和大于第三边,任意两边之差小于第三边判断是否满足,再将满足的代入周长公式即可得出周长的值.

解答 解:①腰长为4时,符合三角形三边关系,则其周长=4+4+7=15;
②腰长为7时,符合三角形三边关系,则其周长=7+7+4=18.
所以三角形的周长为15或18.
故选C.

点评 本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网