题目内容

如下图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长l为
 
考点:等腰梯形的性质,勾股定理的应用,平行四边形的判定与性质
专题:计算题
分析:首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.
解答:解:∵梯形ABCD是等腰梯形,
∴∠D=∠C=45°,
∵EB∥AD,
∴∠BEC=45°,
∴∠EBC=90°,
∵AB∥CD,BE∥AD,
∴四边形ABED是平行四边形,
∴AB=DE=1,
∵CD=3,
∴EC=3-1=2,
∵EB2+CB2=EC2
∴EB=BC=
2

∴△BCE的周长为:2+2
2

故答案为:2+2
2
点评:此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网