题目内容

20.如图,A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)△ABC的形状是等边三角形;(直接填空,不必说理)
(2)延长BP到D点,使得BD=CP,连接AD,试判断△ADP的形状,并说明理由.

分析 (1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
(2)由(1)结论知AB=AC,推出△PCA≌△DBA,根据全等三角形的性质得到∠D=∠APC=60°,由于∠DPA=180°-∠APC-∠CPB=60°,求得∠DAP=60°,即可得到结论.

解答 解:△ABC是等边三角形.
证明如下:在⊙O中,
∵∠BAC与∠CPB是$\widehat{BC}$所对的圆周角,∠ABC与∠APC是$\widehat{AC}$所对的圆周角,
∴∠BAC=∠CPB,∠ABC=∠APC,
又∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
故答案为:等边三角形;

(2)足等边三角形,
理由:由(1)结论知AB=AC,
∵BD=CP,∠PCA=∠DBA,
在△PCA与△DBA中,$\left\{\begin{array}{l}{AB=AC}\\{∠PCA=∠DBA}\\{BD=CP}\end{array}\right.$,
∴△PCA≌△DBA,
∴∠D=∠APC=60°,
∵∠DPA=180°-∠APC=∠CPB=60°,
∴∠DAP=60°,
∴△ADP是等边三角形.

点评 本题考查了全等三角形的判定和性质,圆周角定理.同弧所对的圆周角相等,并且等于它所对的圆心角的一半.也考查了等边三角形的判定方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网