题目内容

1.已知:如图,E、F为平行四边形ABCD对角线AC上两点,且AE=CF,连接DE、EB、BF、FD,求证:四边形DEBF为平行四边形.

分析 先连接BD,交AC于O,由于四边形ABCD是平行四边形,易知OB=OD,OA=OC,而AE=CF,根据等式性质易得OE=OF,再根据两组对角线互相平分的四边形是平行四边形可证之.

解答 证明:连接BD,交AC于O,
∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,
∵AE=CF,
∴OA-AE=OC-CF,
∴OE=OF,
∴四边形BFDE是平行四边形.

点评 本题考查了平行四边形的判定和性质,解题的关键是作辅助线,使其中出现对角线相交的情况.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网