题目内容

如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.

⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;

⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;

⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.

(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD. 【解析】试题分析:(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠C...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网