题目内容

如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是( )

A. B. C. D.

 

A

【解析】

试题分析:如图,

∵点A坐标为(﹣1,1),

∴k=﹣1×1=﹣1,

∴反比例函数解析式为y=﹣

∵OB=AB=1,

∴△OAB为等腰直角三角形,

∴∠AOB=45°,

∵PQ⊥OA,

∴∠OPQ=45°,

∵点B和点B′关于直线l对称,

∴PB=PB′,BB′⊥PQ,

∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,

∴B′P⊥y轴,

∴点B′的坐标为(﹣,t),

∵PB=PB′,

∴t﹣1=|﹣|=

整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),

∴t的值为

故选:A.

考点: 反比例函数综合题

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网