题目内容
19.| A. | 4 | B. | 5 | C. | 6 | D. | 8 |
分析 根据矩形性质得出AO=OC,BO=OD,AC=BD,推出OA=OB,得出△AOB是等边三角形,推出AB=AO=4即可.
解答 解:∵四边形ABCD是矩形,
∴AO=OC,BO=OD,AC=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=4,
故选:A.
点评 本题考查了矩形的性质,等边三角形的性质和判定的应用;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
练习册系列答案
相关题目
10.有下列长度的三条线段,能组成三角形的是( )
| A. | 3cm,4cm,8cm | B. | 4cm,4cm,8cm | C. | 5cm,6cm,10cm | D. | 2cm,5cm,10cm |
7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为( )
| A. | 24cm和22cm | B. | 26cm和18cm | C. | 22cm和26cm | D. | 23cm和24cm |
14.点P(a,2)在第一象限,则点Q(-2,a+1)在第( )象限.
| A. | 一 | B. | 二 | C. | 三 | D. | 四 |
4.下列运算正确的是( )
| A. | $\sqrt{5}-\sqrt{3}=\sqrt{2}$ | B. | $\sqrt{4\frac{1}{9}}=2\frac{1}{3}$ | C. | $\sqrt{8}-\sqrt{2}=\sqrt{2}$ | D. | $\sqrt{8}÷\sqrt{2}=4$ |