题目内容

如图所示,一个半径为数学公式的圆过一个半径为2的圆的圆心,则图中阴影部分的面积是多少?

解:如图,
⊙O的半径为2,⊙C的半径为,点O在⊙C上,连OA,OB,OC,
∵OA=2,CA=CB=,即22=(2+(2
∴OA2=CA2+CB2
∴△OCA为直角三角形,
∴∠AOC=45°,
同理可得∠BOC=45°,
∴∠AOB=90°,
∴AB为⊙C的直径.
∴S阴影部分=S半圆AB-S弓形AB=S半圆AB-(S扇形OAB-S△OAB)=π×(2-+×2×2=2.
分析:如图,连OA,OB,OC,由OA=2,CA=CB=,即22=(2+(2,得到△OCA为直角三角形,则∠AOC=45°,同理可得∠BOC=45°,得到AB为⊙C的直径.所以S阴影部分=S半圆AB-S弓形AB=S半圆AB-(S扇形OAB-S△OAB),然后根据圆、扇形和三角形的面积公式进行计算即可得到阴影部分的面积.
点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.也考查了勾股定理以及90度的圆周角所对的弦为直径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网