题目内容
7.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天.设该中学库存x套桌椅根据题意列方程是$\frac{x}{16}-\frac{x}{24}=20$.分析 通过理解题意可知本题的等量关系,即甲单独修完这些桌凳的天数=乙单独修完的天数+20天,列方程求解即可.
解答 解:设该中学库存x套桌凳,由题意得:$\frac{x}{16}-\frac{x}{24}=20$,
故答案为:$\frac{x}{16}-\frac{x}{24}=20$
点评 本题考查了一元一次方程的应用,解题的关键是找到等量关系,这是列方程的基础,难度不大.
练习册系列答案
相关题目
18.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑥个图形中正方形的个数为( )

| A. | 50 | B. | 48 | C. | 43 | D. | 40 |
2.方程1-$\frac{x+3}{6}$=$\frac{x}{2}$的解为( )
| A. | x=-$\frac{1}{2}$ | B. | x=$\frac{3}{4}$ | C. | x=$\frac{9}{4}$ | D. | x=1 |
19.某超市开展春节促销活动,出售A、B两种商品,活动方案有如下两种:
(同一商品不可同时参加两种活动)
(1)某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?
(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由.
| 方案一 | A | B | |
| 标价(单位:元) | 50 | 80 | |
| 每件商品返利 | 按标价的20% | 按标价的30% | |
| 方案二 | 若所购的A、B商品达到或超过51件(不同商品可累计),则按标价的28%返利;若没有达到51件,则不返利. | ||
(1)某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?
(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由.
16.
如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
| A. | 点M | B. | 点N | C. | 点P | D. | 点Q |
17.下列说法正确的是( )
| A. | 一个正数有一个正的平方根 | B. | 0没有平方根 | ||
| C. | 一个正数有一个正的立方根 | D. | 负数没有立方根 |