题目内容
如图,过反比例函数y=
(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得S1________S2(填>,<或=).
=
分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=
|k|.
解答:由于A、B两点位于反比例函数y=
(x>0)的图象上,
即S=
|k|,则有S1=S2=
|k|=
.
点评:主要考查了反比例函数
中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为
|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=
解答:由于A、B两点位于反比例函数y=
即S=
点评:主要考查了反比例函数
练习册系列答案
相关题目
| 9 |
| x |
| A、S1>S2 |
| B、S1=S2 |
| C、S1<S2 |
| D、大小关系不能确定 |
| 1 |
| x |
| A、S1>S2 |
| B、S1=S2 |
| C、Sl<S2 |
| D、大小关系不能确定 |
| 2 |
| x |
| A、S1>S2 |
| B、S1=S2 |
| C、S1<S2 |
| D、大小关系不能确定 |