题目内容

4.如图,已知点A是双曲线y=$\frac{2}{x}$在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=$\frac{k}{x}$(k<0)上运动,求k的值.

分析 连接OC,易证AO⊥OC,OC=$\sqrt{3}$OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=$\sqrt{3}$EO.设点A坐标为(a,b),则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=-xy=-6,即k=xy=-6.

解答 解:∵双曲线y=$\frac{2}{x}$关于原点对称,
∴点A与点B关于原点对称.
∴OA=OB.
连接OC,如图所示.
∵△ABC是等边三角形,OA=OB,
∴OC⊥AB,∠BAC=60°,
∴tan∠OAC=$\frac{OC}{OA}$=$\sqrt{3}$,
∴OC=$\sqrt{3}$OA.
过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°-∠FOC=∠OCF,
∴△AEO∽△OFC.
∴$\frac{AE}{OF}$=$\frac{OE}{CF}$=$\frac{OA}{OC}$.
∵OC=$\sqrt{3}$OA,
∴OF=$\sqrt{3}$AE,FC=$\sqrt{3}$EO.
设点A坐标为(a,b),
∵点A在第一象限,
∴AE=a,OE=b.
∴OF=$\sqrt{3}$AE=$\sqrt{3}$a,FC=$\sqrt{3}$EO=$\sqrt{3}$b.
∵点A在双曲线y=$\frac{2}{x}$上,
∴ab=2.
∴FC•OF=$\sqrt{3}$b•$\sqrt{3}$a=3ab=6.
设点C坐标为(x,y),
∵点C在第四象限,
∴FC=x,OF=-y.
∴FC•OF=x•(-y)=-xy=6.
∴xy=-6.
∵点C在双曲线y=$\frac{k}{x}$上,
∴k=xy=-6.

点评 本题是反比例函数综合题,其中涉及到等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网