题目内容

13.如图,在△ABC中,∠C=90°,AD平分∠CAB;DE⊥AB于E,若AC=8,则AE=8.

分析 根据角平分线上的点到角的两边距离相等可得CD=DE,然后利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AE=AC.

解答 解:∵∠C=90°,AD平分∠CAB;DE⊥AB于E,
∴CD=DE,
在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{AD=AD}\\{CD=DE}\end{array}\right.$,
∴Rt△ACD≌Rt△AED(HL),
∴AE=AC=8.
故答案为:8.

点评 本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并确定出全等三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网