题目内容
1.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.
①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?
分析 (1)根据题意列方程组即可得到结论;
(2)①由题意列出关于x,y的方程即可;
②把函数关系式配方即可得到结果.
解答 解:(1)根据题意得:$\left\{\begin{array}{l}{2a+b=80}\\{3a+2b=135}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=25}\\{b=30}\end{array}\right.$;
(2)①由题意得:y=(x-20)【100-5(x-30)】
∴y=-5x2+350x-5000,
②∵y=-5x2+350x-5000=-5(x-35)2+1125,
∴当x=35时,y最大=1125,
∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.
点评 此题主要考查了二次函数的应用以及用配方法求出最大值,准确分析题意,列出y与x之间的二次函数关系式是解题关键.
练习册系列答案
相关题目