ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖª£ºÅ×ÎïÏßC1£ºy=ax2¾¹ýµã£¨2£¬$\frac{1}{2}$£©£¬Å×ÎïÏßC2£ºy=$\frac{1}{4}$x2£®£¨1£©ÇóaµÄÖµ£»
£¨2£©Èçͼ1£¬Ö±Ïßy=kx£¨k£¾0£©·Ö±ð½»µÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßC2£¬C1ÓÚM£¬NÁ½µã£®ÇóÖ¤£ºMO=MN£»
£¨3£©Èçͼ2£¬½«Å×ÎïÏßC1ÏòÏÂÆ½Òƾ¹ýµãA£¨8£¬0£©£¬½»yÖáÓÚµãC£¬µÃÅ×ÎïÏßC3£®µãPÊÇÅ×ÎïÏßC3ÉÏÔÚA£¬C¼äµÄÒ»¸ö¶¯µã£¨º¬¶Ëµã£©£¬D£¨0£¬-6£©£¬E£¨4£¬0£©£¬¼Ç¡÷PDEµÄÃæ»ýΪS£¬µãPµÄºá×ø±êΪx£®
¢ÙÇóS¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
¢ÚÇóÂú×ãSΪÕûÊýµÄµãPµÄ¸öÊý£®
·ÖÎö £¨1£©½«µã£¨2£¬$\frac{1}{2}$£©´úÈëy=ax2¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©ÇóµÃM£¨4k£¬4k2£©£¬N£¨8k£¬8k2£©£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©¢ÙÒÀÌâÒâ¿ÉÇó³öÅ×ÎïÏßC3µÄ½âÎöʽΪy=$\frac{1}{8}$x2-8£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½ÇóµÃS=-$\frac{1}{4}$x2+3x+4 £¨0¡Üx¡Ü8 £©£¬
¢ÚÓÉÓÚS=-$\frac{1}{4}$x2+3x+4=-$\frac{1}{4}$£¨x-6£©2+13£¬ÓÚÊǵõ½ÔÚ0¡Üx¡Ü8 µÄȡֵ·¶Î§ÄÚ£¬SµÄȡֵΪ£º4¡ÜS¡Ü13£¬¼´S¿ÉÈ¡4ÖÁ13µÄ10¸öÕûÊý£¬µ±S=12ʱ£¬xÓÐÁ½¸öÖµÏà¶ÔÓ¦£¬¼´´æÔÚÁ½¸öµãPµÄλÖÃʹS=12£¬ÓÚÊǵõ½½áÂÛ£®
½â´ð ½â£º£¨1£©½«µã£¨2£¬$\frac{1}{2}$£©´úÈëy=ax2£¬½âµÃ£ºa=$\frac{1}{8}$£»
£¨2£©Ö±Ïßy=kx£¨k£¾0£©·Ö±ð½»µÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßC2£¬C1ÓÚM£¬NÁ½µã£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{8}{x}^{2}}\\{y=kx}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{{x}_{1}=4k}\\{{y}_{1}=4{k}^{2}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=0}\\{{y}_{2}=0}\end{array}\right.$£¬½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}}\\{y=kx}\end{array}\right.$µÃ£¬$\left\{\begin{array}{l}{{x}_{3}=0}\\{{y}_{3}=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{4}=8k}\\{{y}_{4}=8{k}^{2}}\end{array}\right.$£¬
¡àM£¨4k£¬4k2£©£¬N£¨8k£¬8k2£©£¬
¡àOM=$\sqrt{£¨4k£©^{2}+£¨4{k}^{2}£©^{2}}$=4k$\sqrt{{k}^{2}+1}$£¬MN=$\sqrt{£¨4k-8k£©^{2}+£¨4{k}^{2}-8{k}^{2}£©^{2}}$=4k$\sqrt{{k}^{2}+1}$£¬
¡àOM=MN£»
£¨3£©¢ÙÒÀÌâÒâ¿ÉÇó³öÅ×ÎïÏßC3µÄ½âÎöʽΪy=$\frac{1}{8}$x2-8£¬
¡àS=S¡÷PDO+S¡÷POE-S¡÷ODE=3x+2¡Á£¨8-$\frac{1}{8}{x}^{2}$£©-12
=-$\frac{1}{4}$x2+3x+4 £¨0¡Üx¡Ü8 £©£¬
¢Ú¡ßS=-$\frac{1}{4}$x2+3x+4=-$\frac{1}{4}$£¨x-6£©2+13£¬
ÔÚ0¡Üx¡Ü8 µÄȡֵ·¶Î§ÄÚ£¬SµÄȡֵΪ£º4¡ÜS¡Ü13£¬
¼´S¿ÉÈ¡4ÖÁ13µÄ10¸öÕûÊý£¬
ÓÖµ±S=12ʱ£¬xÓÐÁ½¸öÖµÏà¶ÔÓ¦£¬¼´´æÔÚÁ½¸öµãPµÄλÖÃʹS=12£¬
ËùÒÔ¹²ÓÐ11¸öµãPʹSµÄֵΪÕûÊý£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ýµÄ¼ÆË㣬¶þ´Îº¯ÊýµÄ×îÖµ£¬ÕýÈ·µÄÀí½âÌâÒâÊǽâÌâµÄ¹Ø¼ü£®
| ÄêÊÕÈ루ÍòÔª£© | 1.2 | 1.8 | 3.0 | 5.0 | 10.0 |
| ±»µ÷²éµÄÏû·ÑÕßÊý£¨ÈË£© | 200 | 300 | 400 | 70 | 30 |
£¨1£©¸ù¾Ý±í¸ñ¿ÉµÃ£¬±»µ÷²éµÄÏû·ÑÕ߯½¾ùÄêÊÕÈëΪ2.63ÍòÔª£»±»µ÷²éµÄÏû·ÑÕßÄêÊÕÈëµÄÖÐλÊýÊÇ2.4ÍòÔª£»ÖÚÊýÊÇ3.0ÍòÔª£®
£¨2£©²¹È«·Ö²¼Ö±·½Í¼£»
£¨3£©¸ù¾ÝƵÊý·Ö²¼Ö±·½Í¼£¬Çó´òË㹺Âò100-120ƽ·½Ã×ס·¿µÄÈËÊý¼°´òË㹺Âòס·¿Ãæ»ýСÓÚ100ƽ·½Ã×µÄÏû·ÑÕßÈËÊýÕ¼±»µ÷²éÏû·ÑÕßÈËÊýµÄ°Ù·ÖÊý£®