题目内容
考点:一次函数图象上点的坐标特征
专题:计算题
分析:先根据坐标轴上点的坐标特征得到A(-2,0),B(0,4),再利用勾股定理计算出AB=2
,然后根据圆的半径相等得到AC=AB=2
,再利用OC=AC-AO进行计算即可.
| 5 |
| 5 |
解答:解:当y=0时,2x+4=0,解得x=-2,则A(-2,0);
当x=0时,y=2x+4=4,则B(0,4),
所以AB=
=2
,
因为以点A为圆心,AB为半径画弧,交x轴于点C,
所以AC=AB=2
,
所以OC=AC-AO=2
-2.
故答案为2
-2.
当x=0时,y=2x+4=4,则B(0,4),
所以AB=
| 22+42 |
| 5 |
因为以点A为圆心,AB为半径画弧,交x轴于点C,
所以AC=AB=2
| 5 |
所以OC=AC-AO=2
| 5 |
故答案为2
| 5 |
点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-
,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
| b |
| k |
练习册系列答案
相关题目
某公司今年10月的营业额为2000万元,按计划第四季度的总营业额为7980万元.若该公司11、12两个月营业额的月均增长率均为x,依题意可列方程为( )
| A、2000(1+x)2=7980 |
| B、2000(1+x)3=7980 |
| C、2000(1+3x)=7980 |
| D、2000+2000(1+x)+2000(1+x)2=7980 |
下列计算正确的是( )
| A、2ab+(-2ab)=ab |
| B、a3-a2=a |
| C、a+a2=a3 |
| D、a+2a=3a |
《九章算术》中记载一个这样的问题“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”如果设雀重x两,燕重y两,根据题意列出方程组正确的是( )
A、
| |||||
B、
| |||||
C、
| |||||
D、
|