题目内容
20.顺次连接矩形的四边形中点所得的四边形一定是( )| A. | 平行四边形 | B. | 矩形 | C. | 菱形 | D. | 正方形 |
分析 因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.
解答
解:连接AC、BD,
在△ABD中,
∵AH=HD,AE=EB
∴EH=$\frac{1}{2}$BD,
同理FG=$\frac{1}{2}$BD,HG=$\frac{1}{2}$AC,EF=$\frac{1}{2}$AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形.
故选:C.
点评 本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
练习册系列答案
相关题目