题目内容
8.分析 如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=$\frac{HD}{BH}$列出方程即可解决问题.
解答 解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,![]()
设CK=HB=x,
∵∠CKA=90°,∠CAK=45°,
∴∠CAK=∠ACK=45°,
∴AK=CK=x,BK=HC=AK-AB=x-30,
∴HD=x-30+10=x-20,
在RT△BHD中,∵∠BHD=90°,∠HBD=30°,
∴tan30°=$\frac{HD}{BH}$,
∴$\frac{\sqrt{3}}{3}$=$\frac{x-20}{x}$,
解得x=30+10$\sqrt{3}$.
∴河的宽度为(30+10$\sqrt{3}$)米.
点评 本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.
练习册系列答案
相关题目