题目内容

5.如图,已知直线l:y=$\sqrt{3}$x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M30的坐标为(261,0).

分析 根据直线l的解析式求出∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OMn与OM的关系,再根据点Mn在x轴上写出坐标即可写出M30的坐标.

解答 解:如图,∵直线l:y=$\sqrt{3}$x,
∴∠MON=60°,
∵NM⊥x轴,M1N⊥直线l,
∴∠MNO=∠OM1N=90°-60°=30°,
∴ON=2OM,OM1=2ON=4OM=22•OM,
同理,OM2=22•OM1=(222•OM,
…,
OMn=(22n•OM=22n•2=22n+1
所以,点Mn的坐标为(22n+1,0).
所以,点M30的坐标为(261,0).
故答案为:(261,0).

点评 本题考查了一次函数图象上点的坐标特征,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出变化规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网