题目内容
1.(1)甲车间每小时加工服装件数为80件;这批服装的总件数为1140件.
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
分析 (1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
解答 解:(1)甲车间每小时加工服装件数为720÷9=80(件),
这批服装的总件数为720+420=1140(件).
故答案为:80;1140.
(2)乙车间每小时加工服装件数为120÷2=60(件),
乙车间修好设备的时间为9-(420-120)÷60=4(时).
∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x-4)=60x-120(4≤x≤9).
(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,
当80x+60x-120=1000时,x=8.
答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.
点评 本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
练习册系列答案
相关题目
6.
如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )
| A. | 5 | B. | $\frac{5\sqrt{3}}{2}$ | C. | 5$\sqrt{2}$ | D. | 5$\sqrt{3}$ |
13.大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为( )
| A. | 0.145×106 | B. | 14.5×105 | C. | 1.45×105 | D. | 1.45×106 |
10.
如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是( )米/秒.
| A. | 20($\sqrt{3}$+1) | B. | 20($\sqrt{3}$-1) | C. | 200 | D. | 300 |