题目内容

9.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+$\sqrt{3}$或4+2$\sqrt{3}$.

分析 根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.

解答 解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,
当四边形ABCE为平行四边形,
∵AB=BC,
∴四边形ABCE是菱形,
∵∠A=∠C=90°,∠B=150°,BC∥AN,
∴∠ADC=30°,∠BAN=∠BCE=30°,
则∠NAD=60°,
∴∠AND=90°,
∵四边形ABCE面积为2,
∴设BT=x,则BC=EC=2x,
故2x×x=2,
解得:x=1(负数舍去),
则AE=EC=2,EN=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
故AN=2+$\sqrt{3}$,
则AD=DC=4+2$\sqrt{3}$;
如图2,当四边形BEDF是平行四边形,
∵BE=BF,
∴平行四边形BEDF是菱形,
∵∠A=∠C=90°,∠B=150°,
∴∠ADB=∠BDC=15°,
∵BE=DE,
∴∠AEB=30°,
∴设AB=y,则BE=2y,AE=$\sqrt{3}$y,
∵四边形BEDF面积为2,
∴AB×DE=2y2=2,
解得:y=1,故AE=$\sqrt{3}$,DE=2,
则AD=2+$\sqrt{3}$,
综上所述:CD的值为:2+$\sqrt{3}$或4+2$\sqrt{3}$.
故答案为:2+$\sqrt{3}$或4+2$\sqrt{3}$.

点评 此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网