题目内容
18.(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.
分析 (1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;
(2)欲证明四边形BECD是矩形,只需推知BC=ED.
解答
证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.
又∵AB=BE,
∴BE=DC,
∴四边形BECD为平行四边形,
∴BD=EC.
∴在△ABD与△BEC中,
$\left\{\begin{array}{l}{AB=BE}\\{BD=EC}\\{AD=BC}\end{array}\right.$,
∴△ABD≌△BEC(SSS);
(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.
∵四边形ABCD为平行四边形,
∴∠A=∠BCD,即∠A=∠OCD.
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.
点评 本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.
练习册系列答案
相关题目
6.
如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
| A. | AB=BE | B. | BE⊥DC | C. | ∠ADB=90° | D. | CE⊥DE |
10.
一个几何体的三视图如图所示,则这个几何体是( )
| A. | 三棱锥 | B. | 三棱柱 | C. | 圆柱 | D. | 长方体 |
8.下列图案中,轴对称图形是( )
| A. | B. | C. | D. |