题目内容

8.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.
(1)求证:CD=CE;
(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.

分析 (1)连接CE,由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD=CE;
(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形.

解答 (1)证明:如图,连接CE,
∵AD∥BE,
∴∠A=∠B,
在△ADC和△BCE中
$\left\{\begin{array}{l}{AD=BC}\\{∠A=∠B}\\{AC=BE}\end{array}\right.$
∴△ADC≌△BCE(SAS),
∴CD=CE;
(2)解:△BEF为等腰三角形,证明如下:
由(1)可知CD=CE,
∴∠CDE=∠CED,
由(1)可知△ADC≌△BEC,
∴∠ACD=∠BEC,
∴∠CDE+∠ACD=∠CED+∠BEC,
即∠BFE=∠BED,
∴BE=BF,
∴△BEF是等腰三角形.

点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网