题目内容
1.用合适的方法解下列方程组(1)$\left\{\begin{array}{l}{y=40-2x}\\{3x+2y=22}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=5}\\{4x-2y=1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{6x+5y=15}\\{3x-y=-3}\end{array}\right.$
(4)$\frac{3x+2y}{5}$=$\frac{-x-3y}{3}$=4.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{y=40-2x①}\\{3x+2y=22②}\end{array}\right.$
把①代入②得,3x+2(40-2x)=22,解得x=58,
把x=58代入①得,y=40-2×58=-76,
故原方程组的解为$\left\{\begin{array}{l}{x=58}\\{y=-76}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=5①}\\{4x-2y=1②}\end{array}\right.$
①×2-②得,8y=9,解得y=$\frac{9}{8}$,
把y=$\frac{9}{8}$代入①得,2x+3×$\frac{9}{8}$=5,解得,x=$\frac{13}{16}$,
故原方程组的解为$\left\{\begin{array}{l}{x=\frac{13}{16}}\\{y=\frac{9}{8}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{6x+5y=15①}\\{3x-y=-3②}\end{array}\right.$
①+②×5得,21x=0,解得,x=0,
把x=0代入①得,5y=15,解得y=3,
故原方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$;
(4)原方程可化成方程组$\left\{\begin{array}{l}{3x+2y=20}\\{-x-3y=12}\end{array}\right.$,
①+②×3得,-7y=56,解得,y=-8,
把y=-8代入②得,-x+24=12,解得,x=12.
故原方程组的解为$\left\{\begin{array}{l}{x=12}\\{y=-8}\end{array}\right.$.
点评 本题考查的是二元一次方程组及三元一次方程组的解法,解方程组的方法就是消元.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
| x | … | -3 | $-\frac{5}{2}$ | -2 | -1 | 0 | 1 | 2 | $\frac{5}{2}$ | 3 | … |
| y | … | 3 | $\frac{5}{4}$ | m | -1 | 0 | -1 | 0 | $\frac{5}{4}$ | 3 | … |
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有3个交点,所对应的方程x2-2|x|=0有3个实数根;
②方程x2-2|x|=2有2个实数根.
| A. | x-$\frac{1}{x}$=1 | B. | (x+1)(x-1)=x(x+2) | C. | x2=0 | D. | x3+x2+2=0 |