题目内容

1.用合适的方法解下列方程组
(1)$\left\{\begin{array}{l}{y=40-2x}\\{3x+2y=22}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=5}\\{4x-2y=1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{6x+5y=15}\\{3x-y=-3}\end{array}\right.$
(4)$\frac{3x+2y}{5}$=$\frac{-x-3y}{3}$=4.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{y=40-2x①}\\{3x+2y=22②}\end{array}\right.$
把①代入②得,3x+2(40-2x)=22,解得x=58,
把x=58代入①得,y=40-2×58=-76,
故原方程组的解为$\left\{\begin{array}{l}{x=58}\\{y=-76}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=5①}\\{4x-2y=1②}\end{array}\right.$
①×2-②得,8y=9,解得y=$\frac{9}{8}$,
把y=$\frac{9}{8}$代入①得,2x+3×$\frac{9}{8}$=5,解得,x=$\frac{13}{16}$,
故原方程组的解为$\left\{\begin{array}{l}{x=\frac{13}{16}}\\{y=\frac{9}{8}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{6x+5y=15①}\\{3x-y=-3②}\end{array}\right.$
①+②×5得,21x=0,解得,x=0,
把x=0代入①得,5y=15,解得y=3,
故原方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$;
(4)原方程可化成方程组$\left\{\begin{array}{l}{3x+2y=20}\\{-x-3y=12}\end{array}\right.$,
①+②×3得,-7y=56,解得,y=-8,
把y=-8代入②得,-x+24=12,解得,x=12.
故原方程组的解为$\left\{\begin{array}{l}{x=12}\\{y=-8}\end{array}\right.$.

点评 本题考查的是二元一次方程组及三元一次方程组的解法,解方程组的方法就是消元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网