ÌâÄ¿ÄÚÈÝ
11£®£¨1£©ÇóÕâÌõÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£®
£¨2£©ÇóÕâÌõÅ×ÎïÏߵĶԳÆÖὫ¾ØÐÎQPEFµÄÃæ»ý·ÖΪ1£º2Á½²¿·ÖʱmµÄÖµ£®
£¨3£©ÇódÓëmÖ®¼äµÄº¯Êý¹ØÏµÊ½¼°dËæmµÄÔö´ó¶ø¼õСʱdµÄȡֵ·¶Î§£®
£¨4£©µ±¾ØÐÎQPEFµÄ¶Ô½ÇÏß»¥Ïഹֱʱ£¬Ö±½Óд³öÆä¶Ô³ÆÖÐÐĵĺá×ø±ê£®
·ÖÎö £¨1£©Ö±½ÓÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©Ê×ÏÈÇó³öº¯Êý¶Ô³ÆÖá½ø¶øµÃ³ömµÄÖµ£»
£¨3£©·Ö±ðÀûÓõ±1£¼m£¼6ʱ£¬d=2£¨-m2+7m-6+2£©£¬µ±m£¾6ʱ£¬d=2£¨m2-7m+6+2£©Çó³ödµÄȡֵ·¶Î§¼´¿É£»
£¨4£©µ±¾ØÐÎQPEFµÄ¶Ô½ÇÏß»¥Ïഹֱʱ£¬Ôò¾ØÐÎQPEFÊÇÕý·½ÐΣ¬±ß³¤Îª2£¬½ø¶øµÃ³ömµÄÖµÇó³ö´ð°¸£®
½â´ð ½â£º£¨1£©°ÑA£¨1£¬0£©¡¢B£¨5£¬0£©´úÈëy=ax2+bx+5£¬
$\left\{\begin{array}{l}{a+b+5=0}\\{25a+5b+5=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=-6}\end{array}\right.$£¬
¡ày=x2-6x+5£»
£¨2£©ÈçͼËùʾ£º¡ßÅ×ÎïÏßy=x2-6x+5µÄ¶Ô³ÆÖáΪ£ºx=-$\frac{b}{2a}$=-$\frac{-6}{2}$=3£¬![]()
¡ßÕâÌõÅ×ÎïÏߵĶԳÆÖὫ¾ØÐÎQPEFµÄÃæ»ý·ÖΪ1£º2Á½²¿·Ö£¬
¿ÉµÃPN=3-m£¬PE=2£¬
¡à$\frac{3-m}{2}$=$\frac{2}{3}$»ò$\frac{3-m}{2}$=$\frac{1}{3}$£¬
½âµÃ£ºm=$\frac{5}{3}$»òm=$\frac{7}{3}$£»
£¨3£©µ±x=6ʱ£¬y=x2-6x+5=62-6¡Á6+5=5£¬
¡àµãDµÄ×ø±êΪ£¨6£¬5£©£®
ÉäÏßADËù¶ÔÓ¦µÄº¯Êý±í´ïʽΪy=x-1£¨x£¾1£©£®
¡àP£¨m£¬m2-6m+5£©£¬Q£¨m£¬m-1£©£®
µ±1£¼m£¼6ʱ£¬d=2£¨-m2+7m-6+2£©=-2m2+14m-8£¬
µ±m£¾6ʱ£¬d=2£¨m2-7m+6+2£©=2m2-14m+16£¬
ÓÖd=-2m2+14m-8=-2£¨m-$\frac{7}{2}$£©2+$\frac{33}{2}$£¬
¡àdËæmµÄÔö´ó¶ø¼õСʱdµÄȡֵ·¶Î§ÊÇ4£¼d¡Ü$\frac{33}{2}$£®
£¨4£©µ±¾ØÐÎQPEFµÄ¶Ô½ÇÏß»¥Ïഹֱʱ£¬Ôò¾ØÐÎQPEFÊÇÕý·½ÐΣ¬±ß³¤Îª2£¬
µ±1£¼m£¼6ʱ£¬m-1-£¨m2-6m+5£©=2£¬
ÕûÀíµÃ£ºm2-7m+8=0£¬
½âµÃ£ºm1=$\frac{7+\sqrt{17}}{2}$£¬m2=$\frac{7-\sqrt{17}}{2}$£¬
µ±m£¾6ʱ£¬m2-6m+5-£¨m-1£©=2£¬
ÕûÀíµÃ£ºm2-7m+4=0£¬
½âµÃ£ºm3=$\frac{7+\sqrt{33}}{2}$£¬m4=$\frac{7-\sqrt{33}}{2}$£¨ÉáÈ¥£©£¬
¹ÊÆä¶Ô³ÆÖÐÐĵĺá×ø±êΪ£º$\frac{7+\sqrt{17}}{2}$+1=$\frac{9+\sqrt{17}}{2}$£¬$\frac{7-\sqrt{17}}{2}$+1=$\frac{9-\sqrt{17}}{2}$£¬$\frac{7+\sqrt{33}}{2}$+1=$\frac{9+\sqrt{33}}{2}$£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÒÔ¼°Õý·½ÐεÄÐÔÖʵÈ֪ʶ£¬¸ù¾ÝÌâÒâ±íʾ³ö¾ØÐÎQPEFµÄ±ß³¤ÊǽâÌâ¹Ø¼ü£®
| A£® | 35¡ã | B£® | 45¡ã | C£® | 50¡ã | D£® | 135¡ã |
| A£® | 12 | B£® | 13 | C£® | 24 | D£® | 26 |
| A£® | ÕýÈýÀâÖù | B£® | ÕýÈýÀâ×¶ | C£® | Ô²×¶ | D£® | Ô²Öù |
| A£® | £¨-3£¬$\sqrt{3}$£© | B£® | £¨$-\sqrt{3}$£¬3£© | C£® | £¨$\sqrt{3}$£¬-3£© | D£® | £¨-1£¬$\sqrt{3}$£© |
| A£® | $\frac{2\sqrt{5}}{5}$ | B£® | $\frac{\sqrt{5}}{5}$ | C£® | $\sqrt{5}$ | D£® | $\frac{2}{3}$ |