题目内容

如图,H是△ABC的边BC的中点,AG平分∠BAC,点D是AC上一点,且AG⊥BD于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为
 
考点:三角形中位线定理,等腰三角形的判定与性质
专题:
分析:判断出△ABD是等腰三角形,根据等腰三角形三线合一的性质可得BG=DG,然后求出GH是△BCD的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2GH,然后根据三角形的周长的定义列式计算即可得解.
解答:解:∵AG平分∠BAC,AG⊥BD,
∴△ABD是等腰三角形,
∴AB=AD,BG=DG,
又∵H是△ABC的边BC的中点,
∴出GH是△BCD的中位线,
∴CD=2GH=2×5=10,
∴△ABC的周长=12+15+(12+10)=49.
故答案为:49.
点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,熟记性质与定理并准确识图是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网