题目内容

12.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,DF∥AB交BC于点F,连接EF.
(1)求证:四边形BFDE是菱形;
(2)若AB=8,AD=4,求BF的长.

分析 (1)易证四边形BFDE是平行四边形,再结合已知条件证明邻边EB=ED即可得到平行四边形BFDE是菱形;
(2)设BF=x,所以可得DE=BE=x,AE=8-x,在Rt△ADE中,由勾股定理可得AE2=DE2+AD2,求出x的值即可.

解答 (1)证明:∵DE∥BC,DF∥AB,
∴四边形BFDE是平行四边形.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
∵DE∥BC,
∴∠CBD=∠EDB.
∴∠ABD=∠EDB.
∴EB=ED.
∴平行四边形BFDE是菱形;
(2)解:∵ED∥BF,∠C=90°,
∴∠ADE=90°.
设BF=x,
∴DE=BE=x.
∴AE=8-x.
在Rt△ADE中,AE2=DE2+AD2
∴(8-x)2=x2+42
解得x=3,
∴BF=3.

点评 本题考查了菱形的判定和性质、角平分线的定义、平行线的性质以及勾股定理的运用,熟记菱形的各种判定方法和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网