题目内容

8.如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是$\frac{16}{5}$.

分析 先证明∠AB′B=90°,再证明△ACE∽△ABB′,得到∠AEC=90°,利用面积法求出AE,再利用勾股定理求出EC即可.

解答 解:如图,∵△CDB′是由□CDB翻折,
∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,
∴∠DBB′=∠DB′B,
∵2∠DCB+2∠CBD+2∠DBB′=180°,
∴∠DCB+∠CBD+∠DBB′=90°,
∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,
∴∠ABB′=∠ACE,
∵AD=DB=DB′=3,
∴∠AB′B=90°,
∵∠ACE=∠ABB′,∠CAE=∠BAB′,
∴△ACE∽△ABB′,
∴∠AEC=∠AB′B=90°,
在RT△AEC中,∵AC=4,AD=3,
∴CD=$\sqrt{A{C}^{2}+A{D}^{2}}$=5,
∵$\frac{1}{2}$AC•AD=$\frac{1}{2}$•CD•AE,
∴AE=$\frac{AC•AD}{CD}$=$\frac{12}{5}$,
在RT△ACE中,CE=$\sqrt{A{C}^{2}-A{E}^{2}}$=$\sqrt{{4}^{2}-(\frac{12}{5})^{2}}$=$\frac{16}{5}$.
故答案为$\frac{16}{5}$.

点评 本题考查翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用翻折不变性解决问题,学会利用相似三角形证明直角,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网