ÌâÄ¿ÄÚÈÝ
£¨1£©Çó¡÷APQµÄÃæ»ýS£¨cm2£©¹ØÓÚ¶¯µãµÄÔ˶¯Ê±¼ät£¨s£©µÄº¯Êý½âÎöʽ£¬²¢Ð´³ötµÄȡֵ·¶Î§£»
£¨2£©µ±tΪºÎֵʱ£¬¡÷APQµÄÃæ»ý×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿
¿¼µã£º¶þ´Îº¯ÊýµÄÓ¦ÓÃ
רÌ⣺
·ÖÎö£º£¨1£©ÀûÓÃt±íʾ³öAP¡¢AQ£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¼ÆËã·½·¨Áгö¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÀûÓã¨1£©Öеĺ¯Êý̽ÌÖ×î´óÖµÎÊÌâ¼´¿É£®
£¨2£©ÀûÓã¨1£©Öеĺ¯Êý̽ÌÖ×î´óÖµÎÊÌâ¼´¿É£®
½â´ð£º½â£º£¨1£©AP=2t£¬AQ=6-t£¬
S=
AP•AQ=
¡Á2t£¨6-t£©=-t2+6t£¨0£¼t¡Ü4£©£»
£¨2£©ÓÉS=-t2+6t=-£¨t-3£©2+9£¬
µ±t=3ʱ£¬¡÷APQµÄÃæ»ý×î´ó£¬×î´óÃæ»ýÊÇ9£®
S=
| 1 |
| 2 |
| 1 |
| 2 |
£¨2£©ÓÉS=-t2+6t=-£¨t-3£©2+9£¬
µ±t=3ʱ£¬¡÷APQµÄÃæ»ý×î´ó£¬×î´óÃæ»ýÊÇ9£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄÓ¦Ó㬽èÖúÈý½ÇÐεÄÃæ»ý½¨Á¢º¯Êý£¬ÀûÓú¯Êý̽ÌÖ×îÖµÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿