题目内容
13.分析 根据三角形内角和定理、角平分线的定义以及三角形外角定理求得$\frac{1}{2}$∠DAC+$\frac{1}{2}$∠ACF=$\frac{1}{2}$(∠B+∠B+∠1+∠2)=113°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.
解答
解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,
∴∠EAC=$\frac{1}{2}$∠DAC,∠ECA=$\frac{1}{2}$∠ACF,
∵∠DAC=∠B+∠2,∠ACF=∠B+∠1
∴$\frac{1}{2}$∠DAC+$\frac{1}{2}$∠ACF=$\frac{1}{2}$(∠B+∠2)+$\frac{1}{2}$(∠B+∠1)=$\frac{1}{2}$(∠B+∠B+∠1+∠2),
∵∠B=46°(已知),∠B+∠1+∠2=180°(三角形内角和定理),
∴$\frac{1}{2}$∠DAC+$\frac{1}{2}$∠ACF=113°
∴∠AEC=180°-($\frac{1}{2}$∠DAC+$\frac{1}{2}$∠ACF)=67°.
故答案是:67°.
点评 本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.
练习册系列答案
相关题目
2.关于x的方程式$\frac{m}{x+1}$=1的解是负数,则m的取值范围是( )
| A. | m>-1 | B. | m≥-1 | C. | m<1且m≠-1 | D. | m<1且m≠0 |