题目内容

如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.
求证:∠A=∠D.
考点:全等三角形的判定与性质
专题:证明题
分析:先根据平行线的性质得∠B=∠DCE,再根据“SAS”判断△ABC≌△DCE,然后根据全等三角形的性质即可得到答案.
解答: 证明:∵AB∥DC,
∴∠B=∠DCE,
在△ABC和△DCE中,
AB=DC
∠ABC=∠DCE
BC=CE

∴△ABC≌△DCE(SAS),
∴∠A=∠D.
点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网