题目内容
23、已知n是整数.
(1)请你用含有n的代数式表示奇数;
(2)奇数的平方减1得到的数有什么特征?请简单说明你的结论.
(1)请你用含有n的代数式表示奇数;
(2)奇数的平方减1得到的数有什么特征?请简单说明你的结论.
分析:(1)根据n是整数,2n必是偶数,则2n+1必是奇数进行解答即可;
(2)根据奇数的平方减1得到的数为(2n+1)2-1=4n2+4n=4(n2+n)=4n(n+1),再由4n(n+1),必定能被4整除进行解答即可.
(2)根据奇数的平方减1得到的数为(2n+1)2-1=4n2+4n=4(n2+n)=4n(n+1),再由4n(n+1),必定能被4整除进行解答即可.
解答:解:(1)∵n是整数,
∴2n必是偶数,
∴2n+1必是奇数;
(2)奇数的平方减1得到的数应是8的倍数.
由(1),奇数的平方减1得到的数为(2n+1)2-1=4n2+4n=4(n2+n)=4n(n+1)
可知其必定能被4整除,
又n(n+1)必定是偶数,故这个数是8的倍数.
∴2n必是偶数,
∴2n+1必是奇数;
(2)奇数的平方减1得到的数应是8的倍数.
由(1),奇数的平方减1得到的数为(2n+1)2-1=4n2+4n=4(n2+n)=4n(n+1)
可知其必定能被4整除,
又n(n+1)必定是偶数,故这个数是8的倍数.
点评:本题考查的是整数奇偶性及整除问题、因式分解的应用,能根据题意得出2n必是偶数,2n+1必是奇数是解答此题的关键.
练习册系列答案
相关题目
已知m是整数,且满足
,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为( )
|
A、x1=-2,x2=-
| ||||
B、x1=2,x2=
| ||||
C、x=-
| ||||
D、x1=-2,x2=-
|
已知
是整数,则正整数n的最小值为( )
| 8n |
| A、1 | B、2 | C、4 | D、8 |