题目内容

9.如图,在?ABCD,对角线AC、BD相交于点O、E、F是对角线AC上的两点.
(1)现有三个条件:①∠ADE=∠CBF;②∠ABE=∠CDF;③AE=CF都可确定四边形DEBF为平行四边形.
(2)请选择其中的一个等式作为条件,证明四边形DEBF为平行四边形.

分析 选择③,由四边形ABCD为平行四边形,得到对角线互相平分,再由AE=CF,得到OE=OF,利用对角线互相平分的四边形为平行四边形即可得证.

解答 解:选择③AE=CF,理由为:
证明:∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,
∵AE=CF,
∴OA-AE=OC-CF,即OE=OF,
∴四边形DEBF为平行四边形.

点评 此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网